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Detailed information is provided in this paper on the physics of momentum transfer 
in bubble-driven liquid flows. Experimental information is obtained on the flow 
around bubbles and on the axisymmetric bubble-driven liquid flow inside liquid-filled 
cylinders located with their axes in the vertical direction. A laser-Doppler anemometer 
extended for particulate two-phase flows is employed for these measurements to yield 
local fluid velocity information as well as the rise velocity of bubbles. The bubble top 
radius and the bubble shape were also found from these measurements. 

Utilizing experimentally gained information and employing the basic equations for 
particulate two-phase j b w s ,  permits finite difference equations to be formulated that 
allow bubble-driven liquid flows to be computed. Results are presented for boundary 
conditions corresponding to  those of the experimental studies. Comparisons of 
numerical and experimental results are shown to be in good agreement. This is taken 
as a justification to employ the developed computer programs to carry out parameter 
studies for bubble-driven liquid flow inside circular cylinders. Results of these studies 
are presented and discussed. 

1. Introduction 
For single-phase flows, basic knowledge of simple flows is available from analytical 

and/or numerical solutions of the fluid mechanics equations. These solutions are 
supported and/or extended by experimental results yielding basic information on 
momentum transport in single-phase flows. Such information is not available to the 
same extent for two-phase flows for the following reasons: 

(i) Research work in two-phase flows is often more concerned with solutions to 
practical problems than the gain of basic knowledge. 

(ii) Experimental investigations of two-phase flows require refined experimental 
techniques that have only recently become available. 

(iii) Analytical and/or numerical treatments of the basic two-phase flow equations 
are not readily available. 

These reasons apply to two-phase flows in general and to bubble-driven liquid flows 
in particular. Because of this, bubble-driven liquid flows are not readily understood. 
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No generally accepted method has been developed to analytically or numerically 
study such flows and provide information on the fluid flow field and on the bubble 
motion. The present paper tries to remedy this situation by providing a numerical 
solution procedure that allows the bubble-rise velocity and the fluid velocity to be 
numerically computed from the two-phase-flow equations of motion. Laser-Doppler 
measurements of the flow around rising bubbles are also given to support the 
numerical studies and result in information on the bubble velocity and the bubble 
shape. Two sets of results are provided and these measurements are shown to add 
to the existing knowledge of the motion of rising bubbles. 

Laser-Doppler velocity measurements of the liquid flow inside a cylindrical 
container are also presented. This flow is driven by the rising bubbles and it is shown 
to consist of a rising flow in the centre part of the container and a downward flow 
on the outside. Experimental information is provided for various bubble frequencies 
and for two test cases with different bubble Reynolds and Eotvos numbers. The 
general differences in the shape and motion of the bubbles and the corresponding 
liquid motion are discussed. The bubble motion is influenced by surface impurities 
which reduce the ‘bubble surface mobility’. This is experimentally recorded and is 
employed as the basis of a theoretical approach to deal with the motion of rising 
bubbles under the influence of bubble interface stiffening caused by impurities in the 
liquid. 

Numerical information is obtained through solutions of the basic differential 
equations of particulate two-phase jlows and for the boundary conditions correspon- 
ding to those of the experiments. The region where the bubbles rise is treated as a 
region of finite void with a void fraction being computed from the bubble diameter 
(or the bubble volume) and the bubble frequency. This information is sufficient to 
compute the entire flow field driven by the bubbles. The results of the experimental 
and numerical investigations are shown to be in good agreement. 

The theoretical (numerical) investigations are extended to take into account the 
‘bubble stiffening ’ by impurities inside the interface layer. A phenomenological 
theory is presented which fully explains the experimental findings. The agreement 
between the experimental and numerically obtained results is taken as a justification 
for making further predictions for different parameters influencing bubble-driven 
liquid flows. Some results of these studies are presented in this paper together with 
suggestions for further research on this topic. 

2. Some information on fluid particle motion 
In this section, an attempt is made to provide a brief summary of the existing 

knowledge of various aspects of particle motion in fluids, with particular attention 
being given to the motion of bubbles in liquids. No attempt is made to provide a 
complete description of the extensive experimental and theoretical knowledge that 
is available in literature. For more complete information see Clift, Grace & Weber 
(1978), Harper (1972) or Auton (1984). The following sections are only meant as an 
introduction to the field and to provide some guidance to the many papers on the 
various aspects of particle motion in fluids. 

2.1. )Similarity parameters 
To describe the dynamics of fluid particles moving within another infinitely extended 
fluid, if the two fluids do not mix, the following properties of the fluid and the particle 
are usually introduced, e.g. see Clift et al. (1978). 
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Although the last two parameters are not necessarily independent of each other, their 
introduction is common to define dimensionless groups of parameters that are 
customarily used to classify particulate two-phase flows and/or the motion of 
particles in fluids : 

Reynolds number : 
inertial force pf Au d ,  Re = =- 
viscous force y, ’ 

inertial force 
Weber number: 

- - Pf (AUl2 d ,  We = 
surface tension force 4u ’ 

Eotvos number : 
-- SAP d: - lift force 

Eo = 
surface tension force u * 

Occasionally, another number is used: 
Morton number: 

Using the above dimensionless parameters, Clift et al. (1978) provided a diagram 
which correlates the shape of bubbles and drops with Re, Eo and Mo. This diagram 
is reproduced in figure 1. 

It is somewhat surprising to see that the viscosity of the particulate phase does 
not appear in this diagram, nor do the dimensionless parameters commonly used to 
classify the motion of drops and bubbles in liquids. It is also worth noting that the 
description of the particle shape in figure 1 is somewhat imprecise; the so-called 
ellipsoidal shape refers to bubbles that are far from being symmetrical about a 
‘horizontal axis’, although symmetry may exist about the vertical axis. 

2.2. Bubble shape 
The shape of rising bubbles and drops is determined by the pressure distribution 
along their interface layer and the shape is therefore defined by the mutual 
interaction of surface tension, viscosity, lift and inertial forces. Hence, investigations 
of shape should take into account the characteristic dimensionless numbers defined 
in 82.1. Pan & Acrivos (1968) reported analytical predictions of bubble and drop 
shapes for small Reynolds number (Re < 1) and also small Weber number (We < 1). 
High Re-number computations of bubble shapes have recently been presented by 
Harper (1972), Miksis, Vanden-Broeck & Keller (1982) and Auton (1984). Although 
all these computations seem to give good agreement with experiments under ideal 
experimental conditions, the predictions seem to fail when impurities which collect 
in the interface layer strongly influence the resultant bubble or drop shape. Surface 
contaminants reduce the mobility of the interface layer and thereby influence the 
velocity distribution inside and outside the particle, e.g. see Levich (1962). This in 
return results in an altered pressure distribution along the bubble or drop surface, 
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FIQURE 1 .  Shape regimes for bubbles and drops (reproduced from Clift et al. 1978). 

giving an altered shape. Very little quantitative theoretical information exists on the 
effects of surface contaminants on the particle shape. 

The shape and motion of fluid particles may also be influenced by the presence of 
the vessel walls in which they rise, especially if the vessel is too narrow. Among others 
Govier & Aziz (1972) have looked at this factor and have derived relationships for 
bubbles rising under laminar conditions in vertical tubes. They found that the 
following relationship, 

must be valid for the presence of the pipe wall to have no influence on the particle 
motion. 

2.3. F l m  Jield inside and around bubbles; rising velocity 

The distribution of streamlines, as assumed to exist inside rising bubbles and drops, 
is schematically shown in figure 2, see also Brauer (1982). Figure 2 also provides 
information on the velocity distribution along the horizontal centreline of bubbles 
or drops. Velocity distributions like this were computed by Hadamard (191 1 )  and 
Rybczynski (191 1 )  assuming low-Reynolds-number flow for both the inside and 
outside flow. With this assumption, simplified sets of partial differential equations 
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FIQIJRE 2. Streamlines of flow around a sphere (reproduced from Brauer 1982). 

could be solved to yield the velocity distribution. To match the inside and outside 
solutions, the interface layer was assumed to be an ‘ideal layer’ i.e. the inside and 
outside flow exhibit the same shear stress at the interface layer. 

On the basis of their computations, Hadamard (1911) and Rybczynski (1911) 
developed a formula for the terminal velocity uT of gravity-driven particle motion 
in fluids. For gas bubbles in liquids their formula becomes: 

which differs from the Stokes’ formula for creeping flow of rigid spheres 

Experiments indicate that the terminal velocity of small bubbles obeys the Stokes’ 
law rather than the formula derived by Hadamard (1911) and Rybczynski (1911). 
This suggests that the internal flow circulation of bubble or droplet motion very often 
does not occur for small-Reynolds-number flows. External vortex motion has only 
been observed for uncontaminated rising bubbles in liquids for Re 2 100. At high 
Eo numbers and small Re numbers, the motion is observed to be vertical and straight 
whereas helical upwards motion or plane zigzag motion occurs when the Eotvos 
number is decreased and/or the Reynolds number is increased. 

It became apparent during the present study that little information exists on the 
flow around rising bubbles and drops for Re 2 1. Theoretical studies are mainly 
concerned with small-Reynolds-number flows (e.g. see Hadamard 191 1 ; Rybczynski 
191 l),  or represent solutions of the basic equations of the fluid mechanics for the flow 
inside the rising particle only (e.g. see Durst, Schonung &, Simons 1981 ; Harper 1972) 
with artificial prefixed particle shapes being employed. This lack of physical knowledge 
encouraged us to develop advanced experimental and theoretical means to study 
particulate two-phase flows and to apply these to air bubbles rising in liquids. Two 
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types of bubbles were selected that correspond to the low Eotvos-number and 
Reynolds-number range. These were selected to yield an upward motion with little 
deviation from a straight line, i.e. helical or zigzag motion was negligible. 

3. Experimental investigations 
This section summarizes the experimental work carried out to yield detailed fluid 

mechanics information on bubble-driven liquid flows together with information on 
the rise velocity of bubbles and the bubble shape. The work was carried out to extend 
the results obtained in a previous study by Durst, Taylor & Whitelaw (1984~).  A 
special test section with a bubble-generating nozzle was designed and built which 
allowed individual bubbles to be produced with frequencies up to fb = 2 Hz. Around 
this test section, two laser-Doppler anemometers (LDA) were arranged to measure 
the fluid velocity up and the rising velocity U b  of the bubbles. The two systems were 
extended by two opto-electronic devices to yield information on the bubble shape 
and to identify the presence of a bubble in the measuring control volume. The latter 
device supported the signal processing system especially set-up for this study. 

Section 3.1 provides details of the experimental test rig and the employed 
LDA-system. In $5 3.2-3.4, information on the experimental results is given. 

3.1. Experimental test rig and LDA-system 
The experimental test rig is shown schematically in figures 3 (a)-(c). A top view and 
two side views are sufficient to explain the major features of the set-up. The actual 
test section consisted of a vertically mounted glass tube with an inside diameter of 
100 mm. As figure 3 (a) indicates, the glass tube was surrounded by a square viewing 
box also made of glass. The space between the cylinder outer-wall surface and the 
glass window of the viewing box was filled with a mixture of octanol and castor oil 
adjusted to yield a liquid of the same refractive index as the wall material of the glass 
cylinder. 

To carry out the experiments, two test liquids were used and details of their 
properties are given below : 

Test liquid I :  The first test liquid used was a mixture of octanol and castor oil. The 
volume ratio of the two components was adjusted so that the refractive index of the 
fluid matched that of the glass walls of the cylindrical fluid container. The same fluid 
also occupied the space between the viewing box inner surface and the outer surface 
of the tube. In  this way, a distortion-free laser beam pass was achieved for the 
LDA-measurements with test liquid I. 

Prior to the experiments, the following characteristic parameters of the fluid were 
obtained and remained constant during the experiment : 

refractive index : 
n = 1.470, 

dynamic viscosity : 

,up = 330 CP = 0.33 kg/ms (at 24.4 "C), 

cr = 0.036 N/m, 

pp = 810 kg/ms. 

surface tension : 

density : 
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These quantities yield the following characteristic dimensionless numbers for the 
bubbles in the first set of experiments: 

Re = 1.7;  Eo = 11.3 and Mo = 3.1. 

Test liquid 11: In the second set of experiments, a test liquid consisting of a mixture 
of water and glycerin with a volume ratio of 1: l  was used. With this mixture, a 
combination of dimensionless numbers was obtained such that the resultant bubbles 
show a straight upward, zigzag-free motion. This greatly facilitated the performance 
of the experiments but did not permit the refractive index of the test liquid to be 
matched to that of the glass walls of the test section. Because of this, the measuring 
position could not be taken from the readings of the position indicator of the traverse 
table but had to be corrected within the data processing procedure. 

The following characteristic parameters of test liquid I1 were obtained and 
remained constant during the experiments : 

refractive index 
n = 1.4085, 

dynamic viscosity : 
pf = 8.333 CP = 8.333 x kg/ms (at 20 "C), 

surface tension : 
= 0.053 N/m, 

density : pn = 1136 kg/m3. 

With these parameters, the following characteristic dimensionless numbers were 
achieved for the bubbles used in the second set of the experiments. 

Re = 64; Eo = 0.927; Mo = 2.8 x lo-'. 

The properties of the above test liquids were carefully chosen to meet experimental 
requirements imposed by the LDA-measuring technique and at the same time, to 
ensure bubbles with ellipsoidal shape and vertically straight upward motion. 

The cylindrical test section with viewing box was built as an integrated test rig, 
the bottom part of which consisted of a precision made air-supply nozzle together 
with the air control devices preceding the nozzle. This permitted fine air-supply 
adjustments to be made so that the supply stability was better than 2 % during each 
experiment. This stability WM continuously checked during the experiments by 
recording the resultant bubble frequency. 

In order to permit traverses of the entire velocity field, the integrated test rig was 
mounted on a three-dimensional traversing arrangement which permitted movement 
of the test section in three orthogonal directions relative to the spatially fixed 
LDA-optical units. The other LDA-optical unit was fixed to the test section traverse 
but an additional traverse arrangement was available which made it possible to 
position the measuring volumes of two LDA-systems independently of each other in 
any locations inside the circular cylinder test section. Traverses up to 550 mm above 
the nozzle upper surface were possible with this set-up. 

As already mentioned, the velocity measurements were made with two different 
LDA-systems, one for the measurements of the liquid velocity and one for the 
bubble rise velocity. The former of these consisted of a fonvard-scattering anemo- 
meter, whose physical principles of operation are given by Durst, Melling & Whitelaw 
(1976). Its lay-out is divided into two parts, the emitting and the collecting optics, 
with a measuring volume inside the fluid test section, between the two optical parts. 

3 FLM 170 
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FIGURE 3 (a-c). For caption see facing page. 
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FIGURE 3. (a) Test rig (top view). (b)  Forward scattering anemometer (side view). (c) Back-scattering 
anemometer (side view). (d) Details of the back-scattering Laaer-Doppler anemometer. 

The emitting optics of the forward-scattering system, see figures 3(a) and (b), 
consisted of a 15 mW helium-neon laser ( A  = 632.8 nm), a polarization rotator, a 
beam-splitter prism, two Bragg cells and a 250 mm focusing lens. An integrated 
optical unit, greatly simplified the beam alignment procedure. The entire optical 
system was rotatable around its optical axis, permitting the horizontal and vertical 
velocity components to be measured. The frequency shift performed by the Bragg 
cells made it possible to distinguish between the positive and negative directions of 
the flow. In this way, regions of the flow with small or even zero velocity could also 
be investigated. 

The characteristics of the forward-scattering LDA-system were : 

(i) half angle between intersecting laser beams: 

cp = 5.7", 

(ii) ' fringe ' spacing inside measuring volume : 

(iii) measuring volume dimension in flow direction : 

where rw = 0.45 mm was the waist l/ee-radius of the laser beam at the front laser 
mirror. 

On the collecting side, the optical system consisted of a 150 mm lens which imaged 
a 150 pm pinhole, located in front of the photomultiplier - with an optical imaging 
ratio of 1 : 1 - into the measuring control volume. 

The bubble rise velocity was measured by a back-scattering anemometer extended 
for two-phase flow measurements m suggested by Durst & Zar6 (1975) and Martin 
et al. (1981). The light source was a 5 mW He-Ne laser. The main parts of the optical . 

unit are two $A plates, a beam splitter, a beam separatiOn adjustment unit, a 400 mm 
focusing lens and two mirrors (see figure 3a-d). With this system, the same lens is 

3-2 



62 F. Durst, B.  Sc&ung, K .  Selanger and M .  Winter 

used to focus the two laser beams of the transmitting optics and to collect the light 
reflected from the interface layer of the rising bubbles. In  order to yield high signal 
modulations, the optics incorporated a pinhole aperture arrangement as described 
by Martin et al. (1981). In this way, a single amplitude discriminator ensures that 
only bubble signals are detected. 

The characteristics of the back-scattering optical systems were : 

(i) half angle between intersecting laser beams : 

(75 = 3 . 7 O ,  

(ii) ' fringe ' spacing inside measuring volume : 

- 4.928 pm, 
h 

2 sin (75 
x=-- 

(iii) measuring volume dimensions in flow direction : 

where rw = 0.65 mm was the waist l/e2-radius of the laser beam. 
In order to separate bubble signals from signals resulting from small particles 

inside the fluid, additional opto-electronic devices were incorporated in the LDA- 
systems. The undisturbed light path of the two laser beams of the forward-scattering 
anemometer was monitored by a pair of photodiodes, shown in figures 3(a)  and ( b )  
as D, and D,. Each time, a bubble traversed the measuring volume, the pair of 
photodiodes were interrupted and this resulted in a gate signal of u,, = - 12 V. If 
the bubble velocity u,, is assumed to be constant within this gate time, the duration 
tab of the gate signal becomes a direct measure of the bubble extension in the direction 
of the bubble motion. Knowing the bubble velocity, and measuring the time during 
which the bubble is present inside the measuring control volume, permitted the 
bubble shape to be evaluated from gate measurements at  various location around 
the axis of the tube test section. 

Two additional photodiodes were incorporated into the optical system, indicated 
as D, and D, in figures 3 (a)-(c). For every bubble passage, these photodiodes gave 
a start and stop pulse that defined a time window over which LDA-measurements 
were made for one bubble passage. The positions of the photodiodes D, and D, were 
readjusted with increasing frequencies of the generated bubbles. Within the start-stop 
pulses of D, and D,, a gate voltage of U,, = + 12 V was available as information to 
the signal processing system. 

The actual signal processing scheme is sketched in figure 4. The fluid signal line 
consisted of a photomultiplier followed by an additional amplification stage, a 
band-pass filter and a BBC-Gortz frequency-tracking demodulator (frequency 
tracker). The analog output of this tracker was amplified and filtered and overlaid 
with the gate voltage produced by the two photodiodes D, and D,, i.e. with a voltage 
of U,, = - 12 V. This signal was digitized and stored in an HP-1000 computer. This 
computer also stored the gate signal for individual bubbles, i.e. U,, = + 12 V. 

The laser-Doppler signal from the interface of the rising bubbles was handled in 
a second branch of the signal processing electronics. The signal from a photomultiplier 
(PM2) was amplified, filtered and then digitized and stored by a Datalab (Model DL 
922) transient recorder. The stored and digitized signals were also supplied to the 
HP-1000 computer where software programs were available to check the quality of 
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FIGURE 4. Signal processing scheme. 

the resultant Doppler signals prior to evaluating the Doppler frequency, and from 
it the bubble rise velocity. Due to the various time delays in the digitization and signal 
storage phases of this branch of the signal processing system, signal timing became 
an important part of the data processing in the HP-1000 computer. 

The optical and electronic system described above yielded information on the 
instantaneous fluid velocity and the bubble rise velocity. These data were used to 
compute the various pieces of information on bubble-driven liquid flows provided in 
the following sections. At  each position in the flow ensemble averages were measured 
for the velocities and the gate times and these averages are used below. 

3.2. Flow around bubbles and bubble shapes 
The bubble rise velocity was measured by the backscatter LDA-system and yielded 
the results given in table 1. For increasing bubble frequency the data show the 
expected slight increase in the bubble rise velocity typical for low frequency bubble 
chains rising in a fluid of high viscosity. Extrapolating the above rise velocity to 
fb = 0 yields the following terminal velocities: 

( u ~ ) ~  = 85.5 mm/s, ( u ~ ) ~ ~  = 208 mm/s. 
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Test liquid I Test liquid I1 

f b  [HzI ub [mm/sI T ['CI 
0.166 86.7 24.5' 
0.366 87.9 24.5' 
0.633 89.7 24.5' 
0.917 89.5 24.3' 

TABLE 1 

f b  fHzl ub [mm/sl roc] 
0.333 211.7 18" 
0.517 215.8 21" 
0.633 215.4 17.9' 
0.833 216.9 18" 

This terminal velocity has to  be seen in connection with the measured bubble shape, 
given in figures 5 ( a )  and (b ) ,  yielding the following volume equivalent bubble 
diameters : 

(dJ1 = 6.56 mm, (dJI1 = 2.08 mm. 

This permits the theoretical terminal velocity to  be computed for test liquid I using 
(2.1) and (2.2): 

A comparison with the measured quantities shows that the measured terminal 
velocity is closer to the value computed by (2.1) and this suggests that  internal 
circulation was present in the bubbles studied with test liquid I. For test liquid 11, 
correctly speaking, neither (2.1) nor (2.2) can be used because the Reynolds number 
is too high (Re x 65). However, internal circulation is likely to be present for this 
sphere also, because for a rigid sphere with the same density the terminal velocity 
would be only uT = 120 mm/s. 

The liquid flow around the rising bubbles was measured locally with the forward- 
scattering LDA-system. Utilizing the above rise velocity allowed the data to be 
plotted and tabulated with reference to a coordinate system attached to  the 
corresponding bubble. In  this way, information on the flow field, as indicated in 
figures 5 (a)  and ( b )  and 6 (a-d), was obtained. These figures show examples of plots 
of the measured velocity fields that indicate that no clearly identifiable separated flow 
regions occurred behind the bubbles. This can be taken as another indication that 
internal flow circulation was present for both bubble motions studied. A solid sphere, 
at the higher Reynolds number of the two sets of bubbles, would have shown flow 
separation. 

(uT)(2.1) = 86 mm/s, (uT)(2.2) = 58 mm/s. 

3.3. Bubble-driven liquid jow 
The measured distribution of liquid velocity across the entire test section, a t  a height 
where the bubbles had reached a stationary rise velocity, is given in figures 7 (a)  and 
(b ) .  The continuity equation checks well for the upward and downward flow and this 
check confirms the accuracy of the velocity data to be better than + O . l  mm/s. This 
accuracy is also confirmed by the low scatter of the data indicated in figure 8 which 
gives an example of a detailed plot of the time-averaged vertical velocity component, 
measured for test liquid I .  Figure 8 indicates that  the time-averaged fluid velocity 
profile is nearly flat in the centre part of the test section and tends to fall off rapidly 
from the point where the bubbles have reached their maximum horizontal dimension. 

Figure 9 provides further information on the bubble-driven liquid motion for test 
liquid I. It shows the time-averaged velocity U ~ ( T  = 0) on the axis of the cylindrical 
test section and at a height where this velocity has become independent of the 
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FIQURE 5. (a) Streamlines around a bubble (test liquid I). Re = 1.8; frequency = 0.633 Hz. 
(a) Streamlines around a bubble (test liquid 11). Re = 63.9; frequency = 0.633 Hz. 

distance from the nozzle exit. This figure also contains information on the upward 
liquid flow rate QP. Both quantities are plotted as a function of the bubble frequency 
and reveal a surprising feature of the liquid motion. Although for fb = 0.667 Hz, the 
rising bubbles were already so closely spaced that the liquid velocity on the axis 
moved continuously between bubbles, the relationship between Qr and uf(r = 0) and 
the bubble frequency still remained linear up to fb = 1.917 Hz, the highest frequency 
studied. 

Measurements of liquid and bubble velocity were also performed for test liquid 11. 
No particular differences to the measurements of test liquid I were obtained. 
However, in order to obtain accurate measurements of the fluid velocity distributions 
for the experiments with test liquid 11, the room temperature had to be closely 
controlled and maintained at a value almost the same as the temperature of the test 
liquid. Otherwise, buoyancy-driven liquid motions occurred, observable as thin 
rising liquid films near the wall of the cylinder. Furthermore, the height the bubbles 
had to travel to obtain a constant rise velocity, was longer for test liquid I1 than for 
test liquid I. Consequently, position-independent liquid-velocity profiles could only 
be measured over a reduced region away from the nozzle. Using test liquid 11, the 
velocity showed strong variations with time if no particular care was taken to cover 
the top of the cylindrical test section. This was found accidentally and in the first 
sets of experiments caused us to take great care to obtain time-independent flow 
fields. In a second set of studies, the cause of the time variations of the flow field 
was studied in detail, both experimentally and theoretically. The outcome of the 
studies is given below. 

3.4. Bubble velocity variations along the bubble path 
The investigations described in this section were performed after accidental observa- 
tions showed, especially for test liquid 11, that variations occurred in the results of 
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FIGURE 6. Velocity fields at two different frequencies. Test liquid I :  (a) Re = 1.73; 
frequency = 0.166 Hz. ( b )  Re = 1.76; frequency = 0.366. Test liquid 11: (c) Re = 63.9; 
frequency = 0.633 Hz. (d )  Re = 63.8; frequency = 0.883 Hz. 



Bubble-driven liquid flows 67 

A 

x 

-50 -40 -30 -20 -10 0 10 20 30 40 50 

' 0  Ox A 

-50 -40 -30 -20 -10 0 10 20 30 40 50 
y x 10' (m) 

1.35 

1.75 

X 

21 I x  

10 20 30 40 50 ' I  Y X 1p (m) 

FIGURE 7. (a) Liquid velocity across the test section (test liquid I). (b)  Liquid velocity across 
the test section (test liquid 11). 

liquid-velocity measurements carried out on different days. Results of bubble-velocity 
measurements showed corresponding differences along the bubble path, i.e. the 
centreline of the pipe test section, and these are shown in figure 10. This diagram 
indicates that close agreement was obtained for all results in the lower part of the 
test section, i.e. for about 70 mm above the bubble-producing nozzle. Thereafter the 
bubble velocity did not remain constant at the level of the terminal velocity, but 
showed a characteristic decrease with height. As figure 10 shows, the slope of 
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t 
FIGURE 8. Core flow profile for test liquid I and bubble shape. 

1500 

h 

2 
E 
E ‘Oo0 
v 

c;i 

500 

0 

40 

30 
\ 

E a 

FIGURE 9. Mean upward liquid flow rate Q, and liquid centreline velocity as function of the 
bubble frequency. 

decrease in the bubble-rise velocity increased with time. After reaching a velocity 
maximum, the bubble-rise velocity continuously decreased with height. This readily 
suggested that impurities entered the test liquid through the open end of the pipe 
test section and these caused the well-known ‘stiffening ’ of the gas-liquid interface. 
As time went on, more impurities were able to enter the test liquid causing a faster 
collection of impurities in the gas-liquid interface. The amount of non-liquid interface 
substances also increased with height and this caused the continuous decrease of 
bubble velocity with distance from the bubble-producing nozzle. 

Increasing the impurity content in test liquid I1 caused an asymptotic velocity 
variation with distance from the nozzle to be reached. This variation is shown in 
figure 11 for different liquid heights. It was assumed that this asymptotic velocity 
versus height-distribution was reached due to  the diffusion limited transport of 
impurities to the gas-liquid interface of the bubble. Because of this, there is a limited 



Bubble-driven liquid jows  

190 

180.. 

69 

.. x 

X 

X 

X 

I /  

X 
X 

- 

0 10 20 30 40 50 
x x 10' (m) 

FIGURE 10. Bubble velocity at different liquid age. I, 24.5.83, T = 20.5 "C; A, 25.5.83, 
T = 20 "C; 0, 20.5.83, T = 20.3 "C; X ,  27.5.83, T = 19.8 O C; 0,  7.0.83, T = 22.0 "C. 

210 t 
0 

0 
X 

fb = 0.161 Hz 

0 

-1 X 

0 
X 

F ~ U R E  11. Bubble velocity at different liquid heights. x , H = 0.0 m; 0,  H = 0.3 m; 
A, H = 0.15 m ;  0 ,  H = 0.072 m. 



70 F. Durst, B.  Scfinung, K .  Selanger and M .  Winter 

value for the rate at which the impurity concentration in the interface of the bubble 
can change, irrespective of the outside concentration. This is clearly reflected by the 
results in figure 11. Hence, for any kind of particle-liquid system there will be a 
characteristic bubble velocity versus height distribution which applies to high 
impurity concentrations and characterizes the diffusion-controlled stiffening of the 
bubbles due to concentration increase of impurities in the bubble interface. It is 
characteristic that the bubble-rise velocity will show a maximum a short distance 
above the bubble-generating nozzle. In this region, there will be a maximum of mass 
transfer from the bubble to the liquid, as already indicated in the recent measurements 
of Brankovic, Borner & Martin (1984). 

4. Theoretical investigations 
4.1. Basic equations and their numerical solution 

Bubble-driven liquid flows, as described in the previous chapters, are among the most 
simple types of dispersed two-phase liquid-gas flows. For flows of this kind, basic 
equations are available to deal theoretically with the motions of the dispersed and 
the continuous fluid and many attempts to yield solutions to these equations are 
described in the literature. 

To predict the liquid flow induced by a line of subsequently rising bubbles, it is 
general practice to solve the continuity and momentum equations for the liquid flow 
around upward moving spheres located along the axis of a cylinder. If this approach 
is chosen, time dependent partial differential equations need to be solved for very 
complex boundary conditions ; these boundary conditions are time dependent if the 
coordinate system is chosen to be fixed in space. Under these conditions the boundary 
conditions on the bubble-liquid interface are the most difficult to impose on the 
partial differential equation. 

Because of the aforementioned difficulties, the present theoretical treatments 
relied on a different approach to yield information on bubble-driven liquid flows. The 
predictions are based on the Eulerian approach, which assumes that the dispersed 
phase can be treated as a continuum. The continuity and momentum equations for 
both phases are derived and interaction terms that express the transfer of momentum, 
mass, and energy between the two phases are included. These interaction terms have 
to be modelled locally, and in general analytically or experimentally gained 
correlations for simple flow configurations are used to close the resultant set of partial 
differential equations. 

To formulate the two-phase flow equations in this way requires a local void 
fraction to be introduced: 

(4.1) volume-concentration of phase k 

where V, 4 volume occupied by phase k, V 4 total volume. Taking into account 
that the following relationship holds : 

a,,+a, = 1, 

allows the continuity and momentum equations for both phases to be written in the 
following form, e.g. see Schonung (1983), Durst, Milojevic & Schonung (19843), (k = f, 
fluid phase; k = b,  bubble phase), 

a k = v ,  "k 

continuity equation : 
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momentum equations : 
x-direction : 

y-direction : 

The underlined terms are zero for the dispersed phase in a laminar flow and the 
following forces acting on the liquid and gas phases are included: 

drag : 

(4.6) 
P 
d @b, = 4 Re, Au, @f, z = - @b, 2 ,  

a,,, Of, analogous. 

The above set of partial differential equations needs to be solved for the boundary 
conditions that characterize the two-phase flow under investigation. For the bubble- 
driven liquid flow studied here, the boundary conditions were: 

inlet : 
u,, t+,, a, prescribed, (4.7) 

exit : 

symmetry -line 1 vp = V b  = 0, 

wall : 
u, = V f  = 0. (4.10) 

It has to be emphasized that, for the predictions, only the mass flow rate of the two 
phases (see (4.7)) at the inlet and the size of the bubbles have to be prescribed (see 
(4.13)). The volume concentration of the gas and the velocity of both the phases are 
calculated in the whole domain by solving equations (4.2)-(4.10). For the predictions 
of Durst et al. (1984a), the fluid velocity along the axis of the cylinder had to be 
prescribed as a boundary condition and only single-phase flow calculations were 
performed to get the fluid velocity distribution. 

The partial differential equations (4.2)-(4.4) are solved by using the appropriate 
finite difference equations, derived by integrating the differential equations over 
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control volumes, e.g. see Schonung (1983). For this purpose an orthogonal grid is 
applied, for which the two velocity components for each of the phases and the 
pressure are stored in staggered-grid positions. The necessary linearization of the 
non-linear equations is performed by hybrid differences to get an implicit finite 
difference scheme. Because of the elliptic nature of the partial differential equations, 
an iterative-solution procedure needs to be employed to yield solutions. Starting with 
guessed distributions of the velocity and pressure fields, the fluid velocities are 
calculated from the momentum equations. Thereafter, the solution of a pressure 
correction equation (Poisson equation), which has been derived from the continuity 
equation, yields corrected values for the velocity and the pressure fields so that the 
continuity equation is satisfied. With the corrected values, the momentum equations 
are solved again and the whole procedure is repeated until convergence is achieved. 

The integration of the partial differential equations (4.2)-(4.4) requires the 
unknown momentum interaction terms @ k , z  and @ k , ,  to be modelled. As shown 
below, this is equivalent to prescribing a drag coefficient for the bubble motion. If 
the fluid-particle interaction is more complex, e.g. if there is mass or heat transfer 
between the two phases, the interaction terms need to be modified to yield correct 
particle and fluid flow predictions through the employed theoretical approach. 

4.2. Treatment of particle-jluid interaction 
The bubble-driven liquid flow studied in this paper is characterized by bubbles rising 
along the centreline of a circular test section; the resultant flow is axisymmetric. 
Under these conditions, a single interaction force results acting in the direction of 
the bubble motion. It is usually referred to as buoyancy or drag force depending on 
whether it is considered to act on the bubble stream or on the fluid. Its magnitude 
can be expressed in terms of a drag coefficient. For bubble flows, the drag coefficient 
depends on various parameters and in 52 the main ones have already been given 
expressed in the form of dimensionless numbers like : Reynolds number Re, Weber 
number We, Eotvos number Eo, and Morton number Mo. It has also been shown in 
52 that surface contamination (see Martin & Chandler 1982), can have a strong 
influence on the resultant terminal velocity, i.e. on the resultant bubble drag 
coefficient. Another strongly influencing parameter is the bubble shape, which was 
close to spherical in our experimental studies. Hence, the present theoretical 
consideration concentrates on spherical bubbles only. 

For creeping flow (Re < l ) ,  some analytically derived correlations for the drag 
coefficient C, as a function of Reynolds number Re have been obtained for solid 
spheres (Stokes 1891, Oseen 1927; and Goldstein 1929). For bubbles without surface 
contamination, the corresponding correlations can be deduced from the analytical 
treatment of bubble motion as carried out by Hadamard (1911) and Rybczynski 
(1911) (see 52.3). 

At larger Reynolds numbers (Re > l ) ,  the non-linear terms in the Navier-Stokes 
equations, usually neglected in analytical treatments of particle motion or only 
accounted for approximately, cannot be neglected; they need to be considered in 
deriving analytically C, - (Re)-correlations. This requirement makes analytical deri- 
vation of drag coefficient Reynolds-number relationships difficult and forces theo- 
retical treatments of bubble-driven liquid flows to rely on experimentally obtained 
C,- (Re)-correlations. For solid spheres it is found that the following relationship: 

24 
Re 

C, = - (1 +0.15Re0.s87) (Re < lOOO), (4.11) 
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is a satisfactory correlation for the so-called standard drag curve for solid spheres. 
The corresponding relationship for the drag coefficient of rising bubbles with ‘clean’ 
interfaces can be written as (see Clift et al. 1978) : 

C, =- 14*’ (Re > 2). Re0.78 (4.12) 

The difference between (4.11) and (4.12) is due to the presence of the fluid circulation 
inside bubbles and the corresponding differences in the motion of the fluid around 
the bubble. It is found, however, that very great care has to be taken to obtain 
experimental data for rising bubbles that are in agreement with (4.12). Small 
amounts of impurities in the test liquid already result in C,-values that lie between 
those predicted by (4.11) and (4.12). This indicates that even for most laboratory 
studies of liquid-driven bubble flows, interface active impurities are present and need 
to be taken into account in theoretical treatments of the flow. This finding is 
considered in $4.5. 

4.3. Predictions of fluid motion 
Employing the solution procedure for the finite difference equations given in $4.1, 
and using the correlation for the drag coefficient of rising bubbles given in $4.2, 
predictions of the time-averaged fluid motion were made. 

4.3.1. Numerical prediction of the elliptic, recirculating liquid %ow 
As the liquid flow field in the vertical cylinder is elliptic, the whole set of equations 

(4.1)-(4.10) has to be solved iteratively. A t  the inlet the rising velocity of a bubble 
with diameter de has been prescribed as the inlet velocity of the gas phase. Assuming 
a step function for the gas volume concentration (see (4.14)) and taking into account, 

(4.13) 

the inlet conditions for the gas phase can be written as: 

(”. (Y <=@d,), = { ~b (Y < =@el7 

a =  0 (Y 0 (Y 2 W e ) *  

For all the calculations a grid with 42 x 42 points (42 x 6 grid points in the bubbly 
region) has been used. The predictions are regarded as converged if the residuum of 
the continuity equation, normalized with the bubbly mass flow rate, is smaller than 

In figure 12 a typical streamline distribution ($* = is presented for test 
liquid I and for a bubble frequency fb = 0.917 Hz. 

The streamlines show similar shapes near the bottom and the top surface of the 
liquid container. Parallel, vertical streamlines result over most of the cylinder height 
and the horizontal motion of the liquid is limited to small zones close to the bottom 
and the top surfaces of the liquid container. This is different for the fluid motion 
of test liquid I1 which is indicated by the streamline pattern in figure 13. The 
streamlines for the larger values of $* are shifted upwards towards the free surface 
of the liquid and the streamline patterns close to the upper and lower liquid surfaces 
differ drastically. 

The difference in the flow patterns for test liquid I and test liquid I1 is mainly 
caused by the difference in the fluid viscosities. Test liquid I1 has the lower viscosity 
and this causes the initial region to stretch; in this region the bubble velocity 

10-3. 
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FIGURE 12. Streamlines for test liquid I withf,, = 0.917 Hz. 
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FIGURE 14. Theoretical and experimental liquid velocity across the test section (test liquid I). 

increases with increasing distance from the bottom surface of the liquid container 
until the final rise velocity is reached. Because of the small viscosity of test liquid 
11, it ‘takes longer’ to transfer the bubble motion in the centre of the liquid container 
to the outer region of the fluid. For test liquid I1 low downward velocity close to the 
cylinder wall explains why experimental studies of this flow were sensitive to small 
differences between room and liquid temperatures ; the difference in temperature 
gave rise to  an upward flow, driven by free convection, and this interfered with the 
weak downward flow of the bubble-driven liquid motion close to the cylinder wall. 
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4.3.2. Analytical solution of the juid velocity for the ‘developed ’ region 
It has been shown in figure 12 and figure 13, that the streamlines of the liquid flow 

are, over most parts of the test rig, parallel to the axis of the test section (at least 
for test liquid I). 

Approximating the distribution of the volume concentration by step function : 

(4.14) 

permits the momentum equation for the liquid flow to be solved analytically for 
this ‘developed’ region. There the liquid velocity can be analytically derived by 
integrating the 2-momentum equation to yield : 

In this equation the following quantities are employed : 

uf, fluid velocity, 

Ap, density difference, 
D, diameter of the cylinder, 
de, volume equivalent diameter of the bubble, 
pp, dynamic viscosity of fluid. 

9 ,  gravity, 

As this equation shows, the drag coefficient expressing the fluid-bubble interaction 
does not explicitly appear in the equation for the fluid velocity. However, it enters 
the relationship implicitly since a, is dependent on the bubble velocity and therefore 
also on the drag coefficient of the bubbles. Using equations (4.12)-(4.15) permits the 
liquid velocity distribution in a cross-section of the cylindrical test section to be 
computed. Examples of computations are given in figure 14 for test liquid I and for 
two bubble frequencies. The figure also shows the corresponding experimental results 
and it can readily be seen that good agreement exists between the numerical and 
experimental data. Figure 15 shows that similar agreement is obtained for test liquid 
I1 over most of the cross-section of the cylindrical liquid container. 

Considering the liquid motion, it can be readily deduced from (4.15) that for 
de < D, similar velocity distributions are obtained and can be analytically described 
as : 

(4.16) 

The change from the upward motion in the centre part of the test section and the 
downward motion in the outer part occurs a t  a location given as: 

yo* = x 0.226. (4.17) 
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FIGURE 15. Theoretical and experimental liquid velocity across the test section (test liquid IT). 

The resultant analytical expression for the liquid motion also shows the experimen- 
tally obtained linear dependence of the liquid flow rate of the upward or downward 
motion on the bubble frequency. The flow rate can be computed to be: 

(4.18) 

Q' 

The above considerations were given for a top-hat distribution of gas volume 
concentration ab as indicated in (4.14). It is worth noting that incorporation of the 
exact distribution, computed from the known bubble shape, the bubble rise velocity, 
and the bubble frequency, complicates t h e  derivations but yields only small 
differences in the above results. This is due to  the small region over which the gas 
volume concentration ab differs from zero : 

4 
- < 0.07 
D 

liquid flow 
parameters 

4.4. Parameters influencing bubble-driven liquid flows 

Sections 3.24.3 show how the present treatment of bubble-driven 
resulted in a generally applicable computer program in which all 
influencing the flow can be freely varied. Applying this program to the liquid motion 
of test liquids I and I1 showed that quite different streamline patterns can result 
although both fluid motions are driven by bubbles rising along the centreline of a 
cylindrical liquid container. As the gas volume concentration a, the liquid viscosity 
yf, the diameter of liquid cylinder D ,  and the liquid height H ,  change, the streamline 
pattern of the flow varies accordingly. There are other parameters that influence the 
streamline patterns but some of them are less influential and were therefore not 
included in the parameter study presented here; e.g. since the bubble diameter is in 
most test cascs much smaller than tlhe diameter of the liquid container, the influence 
of the bubble diameter is not an important parameter and can be neglected for most 
of the predictions presented below. 

Changing the above mentioned parameters, a, ,uf, D and H ,  numerical predictions 
of flow patterns have been performed for the test cases in table 2. The normalized 
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Test case Mb( x 1 0 - O )  PI D H de PI/Pb 
1 1.57 0.01 0.1 0.6 0.002 lo00 
2 7.86 0.01 0.1 0.6 0.002 lo00 
3 1.57 0.05 0.1 0.6 0.002 lo00 
4 1.57 0.01 0.5 0.6 0.002 lo00 
5 1.57 0.01 0.1 0.3 0.002 lo00 
6 1.57 0.01 0.1 1.2 0.002 lo00 

TABLE 2. Parameters for fluid flow predictions (all values are given in MKS-units); M, 2 gas mass 
flow rate. 
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FIGURE 16. Streamlines for test case 1 4 .  

streamlines $* = 0.5 are shown in figure 16 for the test cases 1-4. It can be seen from 
this figure, that with increasing gas mass flow rate, e.g. with increasing frequency 
of the introduced bubbles, the distance over which bubble acceleration occurs 
increases resulting in a ($* = 0.5)-line which is moved upwards. This is indicated by 
comparing the streamlines for test case 1 and 2. 

Increasing the viscosity of the test liquid changes the ($* = 0.5)-line downwards. 
This is readily seen by comparing the streamline for test case 1 and the streamline 
for test case 3. Changing the ratio of the cylinder diameter to the liquid height from 
6 to 1.2 as in test cam 1 and 4, results in drastically different streamline pattern. The 
($* = 0.5)-line for case 4 is shifted upwards very close to the liquid surface. 

In  figure 17 the centreline velocities for the test cases 1 4  are given. This figure 
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FIQURE 17. Centreline liquid velocity for test case 1 4 .  
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FIGURE 18. Centreline liquid velocity for different liquid heights in the cylinder. 

indicates the different development length for the bubble velocity due to the different 
parameters of the bubble-driven liquid flow. It is clearly shown that the increase in 
the mass of the gas flow, causes an increase in liquid velocity, see test case 1 and 2 
in figure 17. An increase in fluid viscosity causes a reduction in the rise velocity along 
the centreline of the cylindrical test section. Line 4 shows the different liquid velocity 
along the axis for a reduced ratio of H to D.  

Test cases 5 and 6 have been performed for different heights of the liquid column. 
Figure 18 shows that the liquid centre velocity is hardly influenced by the liquid 
height. The bubbles can reach their maximum velocity if the liquid height is larger 
than 0.30 m. A decrease below this value would interfere with the bubble acceleration 
up to its terminal velocity and result in a changed streamline pattern. 

4.5. Influence of ‘bubble interface stiffening’ on fluid motion 
It is well known, and well documented, that the dynamics of rising bubbles is 
strongly influenced by the impurity content of the interface layer between the gas 
inside the bubble and the surrounding liquid. This dependence was also found in our 
experimental investigations and i t  is documented in $3.4 that the bubble velocity 
decreases with increasing distance from the bubble-generating nozzle after a velocity 
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maximum has been passed. For test liquid 11, the bubbles did not reach the expected 
terminal velocity after the acceleration phase following bubble formation. Measure- 
ments for different water heights showed that the velocity decrease with height was 
not caused by the decrease of hydrostatic pressure experienced by the rising bubbles. 
Considerations of all the data for test liquid I1 indicated that the continuous bubble 
velocity decrease after the maximum velocity was caused by the extended exposure 
of the bubble interface layer to the impurities contained in the liquid. As figure 10 
shows, the bubble velocity decreased with the length of time the fluid had been 
exposed to contamination through the surroundings. The increased concentration of 
impurities in the test liquid increased the speed of their settling in the bubble 
interface, and this in turn yielded an increased rate of velocity decrease with height. 

Treating the bubble interface stiffening and its corresponding influence on the fluid 
motion theoretically, requires the reduction of the bubble surface mobility to be 
treated as a continuous modification of the drag coefficient of the rising bubble. To 
compute the drag coefficient variations due to bubble interface stiffening, Sadhal & 
Johnson (1983) provided an analytical treatment of the problem. They assumed that 
the impurities in the interface gather at the rear of the bubble and defined their 
so-called stiff-angle. This stiff-angle is a function of the amount of surface contami- 
nation present in the entire interface. 

According to the analytical treatment of Sadhal & Johnson (1983), the drag 
coefficient can be expressed as a function of the stiff-angle 4 (Cg = C, (bubble with 
impurities)/C, (clean bubble)) : 

(24 +sin 4- sin 2q5-gsin 34) + 1. 
1 c;: = 4R (4.19) 

The stiff-angle is calculated by the following formula : 

S(4) = A.[24-44 cosq5-sin2q5+4sinq5], (4.20) 

in which the proportionality constant A will be a function of the liquid and gas 
properties and S(4) expresses the amount of impurity in the bubble interface with 
the following limiting values : 

S(0) = 0, S(7t) = 67tA. 

With the assumption that S is proportional to the travelling distance of the bubble, 
the drag coefficient can be given as a function of the distance the bubble moved 
through the liquid. This results in the drag coefficient variation shown in figure 19. 
As the proportionality constant between the amount of impurity and the travelling 
distance of the bubble is not known in the present treatment, the x-distance in figure 
19 has been normalized in such a way, that the drag coefficient reaches its maximum 
value C,, = 1.5 at x* = 1. The measurements showed that the amount of surface 
contamination is also a function of time the test liquid had been in the cylinder (see 
figure 10). For the present computations, this effect has been modelled by introducing 
a factor f ( t )  in equation (4.20), which varies between 0 and 1. The normalized 
travelling distance x* can now be written as 

(24 - 44 cos q5 - sin 24 + 4 sin $), x* = - 1 

6.f(t, 
(4.21) 

1 
2*(0) = 0 ,  x*(n) = -. 

f ( t )  
that is 
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FIGURE 19. Drag coefficient for bubbles with increasing impurity content in the interface layer. 

1 

f(1) 
0 -  

0.2 
0.4 _ _ _ _ _  

--2. -----__ 0.6 -a- 

0.8 -0- 

1.0 -A- 

_. 

---_ -- - -- -_ -. -- 
220 '. 

'a 

200 .. 

190,. 
9 -+-A- 

0 10 20 30 40 50 
x x 10' (rn) 
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The drag coefficient as a function of the travelling distance is obtained with the 
help of (4.19) and (4.21). Using this modified drag coefficient, the bubble rise velocity 
in a stagnant fluid is obtained as a function of the travelling distance of the bubble 
and the time the liquid rested in the cylinder. Figure 20 presents computations of 
the bubble rise velocity as a function of travelling distance for various values off(t). 
It is shown that the bubble velocity variations computed are very similar to the 
experimental data given in figure 10. The good agreement between the computed and 
the experimental maximum velocities and the agreement of shapes of the velocity 
variation curves justify the assumption that the decrease in bubble velocity with 
height is caused by the impurities settling in the bubble interface. Due to lack of 
information, more detailed and more quantitative results cannot be obtained. Too 
little is known about the impurity contents relevant to bubble interface stiffening; 
theoretical treatments have to handle the phenomena in the global way presented 
above. More quantitative experimental studies are needed to get more detailed 
information on the mechanisms by which impurities enter the bubble surface and 
cause the stiffening of the bubble interface. 
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5. Conclusions and final remarks 
We have considered the liquid flow induced by rising bubbles inside a circular 

cylinder with a vertical axis. A brief summary of the existing knowledge shows that 
detailed information on the flow inside and around bubbles is not available. 
Laser-Doppler anemometry is employed to provide the missing information by 
measuring the rising velocity of the bubbles as well as the entire velocity field induced 
in the liquid. Predictions are made, which allow the calculation of the bubble velocity 
and the liquid velocity field by prescribing only the gas volume flow rate and the 
bubble diameter. 

To carry out the bubble velocity measurements and also to obtain measurements 
of the liquid velocity in the fluid, an extended laser-Doppler anemometer is employed 
together with a fast data-acquisition system to map out the entire flow field around 
bubbles. Two bubbles are studied in detail and are characterized by their Reynolds 
number and Eotvos number. Carrying out bubble velocity measurements for various 
bubble frequencies, permits the terminal velocity of a single bubble to be obtained 
by extrapolation of the rising velocity down to the values for zero bubble frequency. 
It is shown that the measured terminal velocity is higher than that obtained for solid 
particles and lies very close to the terminal velocity of rising liquid particles. 
Information for comparison on the terminal velocity is taken from the literature. The 
LDA-measurements show that there is no flow separation at the back of the bubble 
even for the investigated bubble with Re = 64. This indicates that the bubble 
interface is ‘in motion’ due to the flow field of the air inside the bubble. 

However, ‘stiffening’ of the bubble interface can occur if impurities are present 
in the liquid. These will cause the bubble rise velocity to decrease with the distance 
of the bubble from the nozzle. 

A computer program has been developed to predict the velocity of rising bubbles 
as well as the flow field they induced in the surrounding liquid. The prediction 
procedure is based on the two-phase flow equations and only employs information 
on the gas volume flow rate and the bubble diameter to yield the information on the 
flow fields of rising bubbles and the fluid. It is shown that the numerical predictions 
agree well with experiments. For the region where the streamlines of the liquid 
motion can be considered parallel to the trajectory of the rising bubbles the partial 
differential equation for liquid motion can be solved analytically. The resultant 
analytical expression is given and it is shown that it describes the liquid flow field 
in those regions very well. 

The experimentally observed bubble stiffening is dealt with in the theoretical 
derivations and it is shown that the experimentally observed variation of the bubble 
velocity with the height above the nozzle can be theoretically explained. There was 
good agreement between measurements and predictions. 

The paper stresses that the combined use of computer programs and the extended 
laser-Doppler anemometer for studies of particulate two-phase flows permits the 
present physical understanding of simple two-phase flows to be advanced. Extensions 
of the work to more complex two-phase flows are suggested. 
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